Math 206B Lecture 10 Notes

Daniel Raban

January 30, 2019

1 Geometric RSK

1.1 Longest value of a path in RSK

Let Φ denote the R-S algorithm, and let $\hat{\Phi}$ denote RSK. For Φ , we had a property about the longest increasing subsequence of a permutation. What about for $\hat{\Phi}$?

Example 1.1. When we run RSK on

$\lceil 2 \rceil$	0	3]
1	4	1
5	3	1

we get the pair of tableau

1	1	1	1	1	1	1	1	2	2	2	3
2	2	2	2	3							
3	3	3									
1	1	1	1	1	2	2	2	3	3	3	3
2	2	2	3	3							
2	2	2									

Then $\lambda_1 = 12$, which happens to be the sum of the numbers in the longest path from top left to bottom right : 2 + 1 + 5 + 3 + 1 = 12.

Theorem 1.1. Let $\hat{\Phi}(M) = (A, B)$ have shape λ . Then $\lambda = \gamma(M)$, where γ is the maximum total value of a path from (1, 1) to (n, n).

1.2 Geometric RSK

How would we feed a semistandard Young tableau to a computer? We want to think of $A = (\lambda \supseteq \cdots \supseteq \mu^{(2)} \supseteq \mu^{(1)})$, where μ_i is the shape of the tableau, only looking at the numbers $\leq i$.

Example 1.2. For the tableaux

we get

٦

The ball part these together must a matrix	We	can	put	these	together	into	\mathbf{a}	matrix
--	----	----------------------	-----	-------	----------	------	--------------	--------

$$\begin{bmatrix} 12 & 11 & 8 \\ 8 & 5 & 4 \\ 5 & 3 & 3 \end{bmatrix}$$

The output of RSK can then be sent to a computer as $x = (x_{i,j})$ such that

- $x_{i,j} \ge 0$
- $x_{i,j} \le x_{i,j+1}, x_{i+1,j}$
- $\sum_{i=n-c} x_{i,j} = a_1 + \dots + a_c$
- $\sum_{j=i=n-c} x_{i,j} = b_1 + \dots + b_c$, where $0 \le c \le n$.

This defines a polytope. So we can think of $\tilde{\Phi} : \tilde{M}(\bar{a}, \bar{b}) \to \tilde{X}(a, b)$, where the left hand side takes a polytope defined by a matrix, and the the right side outputs a polytope defined by a matrix.

Theorem 1.2. $\tilde{\Phi}$ is piecewise linear, volume preserving, and continuous.

These polytopes were invented by Gelfand and Tseitlin. This was further developed in a paper by Gelfand and Zelevinsky.

1.3 Further generalization of RSK

Let $|\nu| = k$ be a Young diagram. Let

$$P_{\nu}(\overline{a},\overline{b}) = \left\{ f: \nu \to \mathbb{R}_{+} \text{ s.t. } f(i,j) \leq f(i,j+1), f(i+1,j), \sum_{j} f(i,j) = a_{i}, \sum_{i} f(i,j) = b_{j} \right\}$$
$$Q_{\nu}(\overline{a},\overline{b}) = \left\{ g: \nu \to \mathbb{R}_{+} \text{ s.t. } \sum_{i-j=c} g(i,j) = d_{c} \,\forall c \right\},$$

where d_c is something.

Theorem 1.3. There exists Φ^* sending $P_{\nu}(\overline{a}, \overline{b}) \to Q_{\nu}(\overline{a}, \overline{b})$ which is piecewise linear, continuous, volume preserving and a bijection $\Phi^* : P_{\nu} \cap \mathbb{Z}^k \to Q_{\nu} \cap \mathbb{Z}^k$.